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Approximate method for gap soliton propagation in nonuniform Bragg gratings

Neil G. R. Broderick* and C. Martijn de Sterke
School of Physics, University of Sydney, Sydney 2006, Australia

and Australian Photonics Cooperative Research Centre, Australian Technology Park, Eveleigh, 1430, Australia
~Received 10 July 1998!

An effective particle picture developed earlier for gap soliton propagation in piecewise uniform gratings is
extended to treat gratings that vary gradually. In particular, we consider gratings in which the strength or the
Bragg frequency varies linearly with position. We use this to analyze propagation in more complicated struc-
tures corresponding to localized grating defects, and gradual interfaces between two different gratings.
@S1063-651X~98!07312-7#

PACS number~s!: 42.65.Tg, 42.65.Pc, 42.70.Qs
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I. INTRODUCTION

Earlier this year Taverner and co-workers reported
first observations of gap soliton generation in a Bragg gra
at frequencies within the photonic band gap@1,2#. These ex-
periments compliment those of Eggleton and co-work
@3–5#, who examined propagation through Bragg gratings
frequencies outside the band gap, where the grating is tr
missive but highly dispersive. In the experiments by Ta
erner and co-workers@1,2# and in the most recent ones b
Eggletonet al. @5#, nonuniform gratings were used to opt
mize the coupling of the light into the grating. Furthermo
both sets of experiments were performed in relatively sh
gratings~8 cm in Refs.@1,2#, 6 cm in Ref.@5#!. Thus, in these
experiments, pure soliton propagation effects are difficul
distinguish from effects due to soliton formation. Howev
in future experiments, gap soliton propagation over lon
lengths is likely to be studied; note that currently the ma
mum available length for a fiber Bragg grating is rough
1 m @6#.

In the experiments of Taverner and co-workers the gra
length was 8 cm, as this was the maximum length o
which uniformity of the Bragg frequency could be assure
In writing longer fiber Bragg gratings this uniformity de
creases due to random refractive index fluctuations, as
as to temperature drifts during the writing process. Thu
gap soliton propagation over long distances is to be exp
mentally observed, then gap solitons must be stable to s
perturbations.

Light propagation in nonlinear Bragg gratings is usua
described using the nonlinear coupled mode equat
~NLCME’s!. These apply to bothx (3) materials@7–9# and to
x (2) materials in the cascading limit@10#. Gap solitons are
solitary wave solutions to the NLCME@11–13#, and can
propagate at any speed between zero and the speed of lig
the uniform medium. Much of the interest in gap solitons h
focused on those solutions whose frequency content is in
the grating’s band gap@2,8#, where, in the linear regime
light cannot propagate. However, gap solitons with frequ

*Present address: Optoelectronics Research Center, Univers
Southampton, Southampton, U.K.
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cies outside the band gap, grating solitons, where the gra
is highly dispersive, have also attracted considerable at
tion @3–5#.

Predicting the behavior of gap solitons in the presence
small perturbations requires some analytic approximation
the NLCME’s, since they cannot be solved exactly. Sim
larly, perturbations to the nonlinear Schro¨dinger equation
~NLSE! are also rarely tractable. Therefore, a wide range
approximate methods has been developed to deal with
ton propagation~for example in Ref.@14#!. Most of these
rely on the fact that if the field can initially be described as
soliton, then it remains a soliton. As solitons are charac
ized by a small number of real parameters, the perturbat
lead to a set of ordinary differential equations for the solit
parameters@14#. This is a considerable simplification com
pared to the full problem, which requires solving a nonline
partial differential equation. Such methods can be descri
as effective particle pictures~EPP’s!, since they represent th
continuous field distribution as a point particle with a limite
number of degrees of freedom.

The key difference between the NLSE and NLCME’s
that the NLSE is integrable@15# whereas NLCME’s are not
This suggests that NLSE solitons are more robust than
solitons, and hence that an EPP would be more accura
that case. However, previously, gap soliton propagation
the presence of uniform gain and loss was succesfully tre
using an EPP@16,17#, and we ourselves examined gap so
ton propagation across abrupt interfaces using a similar te
nique @18#. Hence it is natural to apply the EPP to mo
general perturbations. The EPP we developed is simila
one used by Aceves, Newell, and Moloney@14# to treat
NLSE soliton propagation across an interface. The met
was also used by Capobiancoet al. to treat propagation be
tween two quadratically nonlinear materials@19#. In this pa-
per we extend our earlier work@18# to show that the EPP
works for nonuniform gratings whose parameters cha
continuously.

The outline of this paper is as follows: In Sec. II w
outline the EPP we derived previously, and discuss som
its more general features. We then use the EPP in Sec. I
treat gap soliton propagation in simple structures, bef
combining these structures to treat more complicated per
bations in Secs. IV and V.
of
7941 © 1998 The American Physical Society
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II. EFFECTIVE PARTICLE APPROACH

Light propagation in Bragg gratings is usually describ
by the nonlinear coupled mode equations@8#. However, in
the presence of perturbations we need to modify these
cordingly. Using a complex matrixVi j to describe the per
turbations, the modified coupled mode equations are wri
as @18#

i
] f 1

]x
1

i

vg

] f 1

]t
1k f 212Gxu f 2u2f 1

1Gsu f 1u2f 11V11~x! f 11V12~x! f 250, ~1a!

2 i
] f 2

]x
1

i

vg

] f 2

]t
1k f 112Gxu f 1u2f 2

1Gsu f 2u2f 21V21~x! f 11V22~x! f 250, ~1b!

where f 6 are the slowly varying envelopes of the forwa
and backward propagating waves at the Bragg frequencyv0.
The group velocityvg , which determines the speed of th
fields in the absence of a grating, is set equal to unity b
rescaling of the timet. Parameterk describes the grating
strength, andGs and Gx determine the strength of the sel
and cross-phase modulations, respectively. In optical fib
with a x (3) nonlinearity~and most other materials! Gs5Gx .
However the NLCME’s also describe light propagati
through ax (2) material, and in that case the value ofGs /Gx
is determined by the frequencies involved and can take
most any value@20#.

Since in Eqs.~1! we assumed that the perturbations a
proportional to the fields, the matrixV is unable to represen
the effects of a driving term. However, most other pertur
tions can be represented in this manner. We note that w
the perturbation is nonlinear, the elements ofV depend on
the envelopes themselves. We restrict our analysis to a
mitian V, as this represents a lossless medium. The effec
gain and loss have been treated previously@16,17#, and our
analysis reproduces their results in the appropriate limit.

In the absence of any perturbations (Vi j 50), the
NLCME’s possess the following gap solitons solutions fou
by Aceves and Wabnitz@11#:

f 6~x,t !56aA k

2Gx
S 16x

17x D 1/4

sinr

3sech~u7 ir/2!ei ~s1h!, ~2!

where the nonlinearity was taken to be positive. Further,

u5gk sin~r!~x2x02xt !, ~3!

s5gk cos~r!~xx2t2t0!, ~4!

a5S 11
Gs

2Gx

11x2

12x2D 2 1/2

, ~5!

eih5S 2
e2u1e7 ir

e2u1e6 irD 2Gsv/[2Gx~12v2!1Gs~11v2!]

, ~6!
c-
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where g51/A12x2 is the Lorentz factor. Note that i
Gs5Gx , thena2→ 2

3 asx→0. Also, a→0 asx→61.
The gap soliton velocity is given byxvg , where xP

@21,1#. The center frequency is given byV5gk cos(r),
and r is restricted to the range@0,p#. Note that the center
frequency of the gap soliton can be arbitrarily far from t
Bragg frequencyv0. For uVu,k the center frequency is
within the grating’s band gap@8#.

For the application of the EPP it is important that t
solutions depend on four parameterst0, x0, r, andx. As we
are interested in propagating solitons, we refer tot0 andx0 as
the initial conditions, while the solitons themselves are ch
acterized byx, the soliton velocity in units ofvg , andr, the
soliton amplitude. The initial conditiont0 defines the soli-
ton’s absolute phase, and is only important for proble
dealing with multiple solitons, which we do not consid
here. Parameterx0 is unimportant, providedux0u@0, as we
only consider perturbations to a uniform grating which beg
near the origin. If the gap soliton is initially sufficiently fa
from the perturbation, the precise initial position does n
matter andux0u may be taken to be2` for convenience.

In the presence of perturbations analytic soliton solutio
do not usually exist. However, if the perturbations are sm
then we can make the EPP assumption that we can alw
describe the field as a gap soliton. Thus in the EPP appro
we are interested in the time evolution ofr andx, as these
uniquely define the gap soliton given the initial conditionsx0
and t0. Our aim is thus to derive evolution equations forr
and x. This was done previously for a different class
perturbations@18#, and so only the salient points are expli
itly treated here. The EPP is derived by considering a sm
set of moments of the field which in the absence of pert
bations completely characterize the gap soliton. The m
ments, which are analogous to those used in Ref.@14#, are
given below, where they are defined ([) and then evaluated
for a gap soliton (5). They are the energyQ,

Q[E
2`

1`

~ u f 1u21u f 2u2!dx5
2ra2

Gx
; ~7!

the average positionx̄,

x̄[
1

QE
2`

1`

x~ u f 1u21u f 2u2!dx5x01xt; ~8!

and the momentumP,

P[2 i E
2`

1`

~ f 1* ]xf 11 f 2* ]xf 2!dx

5
2kxg

Gx
a2sinr1

4kGsxg3

Gx
2

a4~sinr2r cosr!. ~9!

Both Q andP are conserved quantities of the unperturb
equations@21,22#. They have the property that for a sing
gap soliton, knowledge of these moments allows one to
construct it up to a constant phase factor.
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Using the coupled mode equations@Eqs. ~1!# the time
derivatives of moments~7!–~9! can be calculated and ar
given in full in Ref. @18#. Here we only give the most rel
evant:

dQ

dt
50, ~10a!

dP
dt

5E
2`

1`F u f 1u2
]V11

]x
1u f 2u2

]V22

]x
12RS f 1 f 2*

]V21

]x D Gdx.

~10b!

Equation~10a! expresses energy conservation, while E
~10b! expresses the effect of the perturbation on the gap s
ton. Equations~10! are exact; however, to evaluate the int
grals we must know the field at all times, which involv
solving the full NLCME. Instead, as mentioned, we assu
the field always remains a gap soliton. Further simplific
tions can be made sincedQ/dt50, we can expressr(t) in
terms ofx(t) and the initial energyQ0 as

r~ t !5
Q0Gx

2a„x~ t !…2
, ~11!

leading to the final EPP set of equations:

dx̄

dt
5x, ~12a!

dP
dt

5F~ x̄!, ~12b!

P5P~x!. ~12c!

HereF is the ‘‘force’’ on a gap soliton found by evaluatin
the integrals in Eq.~10b!. Note that our method explicitly
calculatesx̄ rather than inferring it from the values ofx and
r. This is done for clarity since in general the force on t
gap soliton depends on its position. Henceforth, when
refer to solving the EPP equations we mean solving E
~12!. Note that the perturbation manifests itself through
forceF. Thus, whenever analyzing a nonuniform grating u
ing the EPP, the first step is always to evaluate the integra
Eq. ~10b! to find the EPP force. As expected, the EPP fo
depends only on the gradient of the perturbation mat
since whenV is a constant Hermitian matrix, Eqs.~1! are
identical to the NLCME’s. Having derived the EPP we ne
discuss some general properties of the EPP before prese
some applications.

Here we are concerned with gap solitons propagating
nonuniform gratings of infinite extent. It is thus useful
reduce the parameter space as much as possible. For a
form grating, one can rescale the NLCME’s, resulting ink
51 @8#. Similarly, one can setGs85Gs /Gx andGx51, with-
out loss of generality. For a nonuniform grating this resc
ing results ink(x)51 at a single point which may be chose
arbitrarily. We can thus restrict ourselves to gratings
which k(x)→1 andGx(x)→1 asx→2`. In fact, for the
gratings we consider,k(x)51 if x,2a, where typicallya
is order unity. We similarly introduce a dimensionless leng
.
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by x→xk(2`). With these normalizations all quantitie
including the fields in Eqs.~1!, are dimensionless.

General properties of the EPP

Equation~7! shows that the energyQ of a gap soliton is a
function of bothx and r. Since in the EPP this energy i
assumed to be conserved,x(t) and r(t) are constrained to
move on contours of equal energy in the (r,x) plane. These
contours are shown in Fig. 1, and their analytic form is giv
in Eq. ~11!. Note that each contour has a maximum veloc
xm which is reached whenr5p. Inverting Eq. ~7! when
r5p gives

xm5A4p2GsQ022GxQ0

4p1GsQ022GxQ0
, ~13!

whereQ0 is the initial energy of the gap soliton. Equatio
~13! shows that, in the EPP approximation, the smaller
initial energy of a gap soliton, the higher the maximum v
locity it can attain. If our numerical simulations show that
initial gap soliton has accelerated pastxm then either it has
shed energy or the field has ceased to be a gap soliton
either case the EPP is not valid. This arises in Sec. III B, a
is discussed in more detail there. In the other cases we
sidered, the velocity of the gap soliton does not appro
xm , and our EPP remains valid.

In the low velocity limit of the EPP (x!1) we can ap-
proximate Eq.~12c! by

P5
16kGs

9Gx
2

„sinr2r cos~r!… x[mx, ~14!

wherem does not depend on velocity, and can be conside
to be the ‘‘mass’’ of the soliton in analogy with Newtonia
mechanics. In this low velocity limit our EPP equations a
then formally identical to Newton’s equations. If in this lim
the forceF depends only on position, then a potentialU(x)
can be defined as@18#

U~ x̄!52E
2`

x

F~x8!dx8. ~15!

The EPP equations can then be solved exactly, giving

x~ x̄!22x~x0!25
2

m
„U~x0!2U~x!…, ~16!

FIG. 1. Contour plot of constant energy as a function ofr
andx.
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wherex0 is the initial position of the gap soliton.
Given a maximum heightU of a potential, then Eq.~16!

implies that gap solitons with velocities less than

xu5A2U

m
~17!

are reflected. Note that for a sufficiently large height, E
~17! predicts a velocity for which the potential approxim
tion is no longer valid. Thus care must be taken to ens
that the results are not used outside the velocity regime
which the potential approximation is valid.

The class of nonuniform gratings is too large to test
EPP on every different type. Instead we restrict ourselve
a few generic grating types which can be fabricated, a
which let us develop a general understanding. A further
striction is that we only consider gratings for which the i
tegral for the EPP force@Eq. ~10b!# can be evaluated exactly
In this case the EPP equations reduce to two ordinary dif
ential equations which can be efficiently solved numerica
Otherwise, finding numerical solutions to the EPP equati
is as computationally intensive as the full numerical simu
tions. The simplest class of gratings that fulfill these requ
ments are gratings whose parameters are piecewise l
functions of position. Such gratings are considered in S
III.

III. PROPAGATION ALONG A RAMP

A. A k ramp

In the perturbation considered here, the grating stren
varies linearly with position forx.0, but the Bragg fre-
quency is constant. Hencek is given by

k~x!5H k0 , x,0

k01Dkx, x.0,
~18!

whereDk.0. We take the grating to be infinitely long wit
the strength increasing without bounds asx→`. Since, as
we show below, any such incident soliton is ultimately r
flected, the idealization of the grating strength growing wi
out bound is not essential. However, the time spent in
perturbed region depends on the gap soliton’s parame
Such a grating could thus act as a nonlinear mirror with
time delay varying nonlinearly with the incident energy.

For the grating described in Eq.~18!, the perturbation
matrix V vanishes forx,0. Forx.0 we have

V5S 0 Dkx

Dkx 0D . ~19!

Substituting Eq.~19! into Eq. ~10b! we obtain@23#

dP
dt

52
Dka2

g

sinr

Gx

3S 11
sinh~2gk0sin@r# x̄!

cosh~2gk0sin@r# x̄!1cosr
D , ~20!

wherex̄ is the gap soliton location@Eq. ~8!#. Note that in Eq.
~20! only k0 and notk(x) appears in the argument of th
.

re
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e
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-
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-
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hyperbolic functions. This is so since for our ansatz we to
the gap soliton solutions for a uniform grating of strengthk0.
WhenDk is sufficiently small,k(x) does not vary consider
ably over the width of a gap soliton, and thus we can repl
k0 by k( x̄) in Eq. ~20!. This results in a slight improvemen
in the EPP accuracy.

For x̄@0 the right hand side of Eq.~20! approaches a
constant. Whenr<p/2 the sign ofdP/dt is always nega-
tive, implying that the soliton is repelled by the ramp,
expected. In contrast, whenr.p/2 the force on the gap
soliton is positive forx̄,x0 , where

x05
21

2gk sinr
cosh21S 2~11cos2r!

2 cosr D , ~21!

at which pointdP/dt changes sign and the gap soliton
repelled thereafter. Thus in the EPP picture, at least, all s
tons are reflected by the ramp. We note that previously
found that, for an abrupt interface, stationary solutions o
exist forr.p/2, and we were able to find exact solutions
the NLCME’s@18#. However, unlike the abrupt interface, w
have been unable to find exact analytic expressions for
tionary solutions in this case.

Recall that for low velocitiesP}x and that the EPP equa
tions are then formally identical to Newton’s equations
motion. For the force in Eq.~20!, the low velocity approxi-
mations leads to the potential

U~ x̄!5a2
Dk

2Gx
@4k sin@r# x̄

1 ln~112e22k sin[r] x̄cosr1e24k sin[r] x̄!#. ~22!

In this limit the velocityx of the gap soliton is given by Eq
~16!. For largex̄ we can approximate the potential in E
~22! by

U~ x̄!'a2
Dk

Gx
2k sin@r# x̄. ~23!

Note that whenr.p/2 the potential has a minimum at
position given by Eq.~21!, suggesting that stationary soliton
might exist and be stable.

We now have two approximations to the trajectories:
exact EPP trajectory obtained by solving Eq.~20! numeri-
cally; and a low velocity approximation, following from th
potential in Eq.~22!. Since our numerical simulations sho
that all incident gap solitons are reflected, the main featur
the trajectory is the position of the turning point. It describ
how far the gap soliton ventures into the perturbed regi
and gives an indication of the time it spends there. Equa
~23! leads to the approximation for the turning pointxt ,

xt'
Gxmx2

2a2kDksinr
, ~24!

wherem was defined in Eq.~14!. Figure 2 shows the turning
point versus velocity, for all different methods. On this sca
they are indistinguishable, indicating that the exact EPP i
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good agreement with the numerical result. Furthermore,
low velocity approximation to the EPP holds for the velo
ties considered in Fig. 2.

In the numerical simulations of NLCME’s with ak ramp,
we found that upon reflection the gap soliton would begin
oscillate @24#. These oscillations seem to be a generic
sponse of gap solitons@25# ~and nonintegrable systems@26#!
to perturbation and in some cases leads to the destructio
the soliton. As discussed in Ref.@18#, the EPP assumes th
gap soliton has no internal degrees of freedom, and he
cannot describe the gap soliton oscillations.

B. A d ramp

The other type of grating we consider is one where
Bragg frequency varies linearly forx.0. Thus the perturba
tion matrix V vanishes forx,0, whereas, forx.0,

V5S Ddx 0

0 DdxD . ~25!

Solving the EPP integrals leads to

dP
dt

5
2a2Dd

Gx
Fr2 2tan21S tanh~2gk sin@r# x̄!tan

r

2D G .
~26!

Note that the EPP force never changes sign, and approa
a constant forx̄@0. This implies that forDd,0 gap solitons
are always repelled by the barrier, while forDd.0 the gap
soliton’s velocity increases.

WhenDd,0 the gap soliton moves deeper into the ba
gap as it propagates toward1`. This causes it to be re
flected by the grating. As for the case of ak ramp, the EPP
accurately predicts the position of the turning point. We n
that, in the low velocity limit, potential Eq.~15! for this EPP
force is valid. However, we cannot find a closed-form an
lytic expression for the potential. Thus finding the trajecto
of the gap soliton using the potential is computationally
time consuming as solving the EPP equations exactly.

WhenDd.0, the gap soliton moves away from the cen
of the band gap as it propagates through the grating. Ev
tually its original center frequency is outside the band g

FIG. 2. Normalized turning point vs the incident velocity
units of vg for a gap soliton withr52, and for a grating withk

51 andDk50.01. The normalized positionx̃5xk is dimension-
less.
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As the gap soliton continues to propagate, the group velo
of its center frequency asymptotically approachesvg . Now a
NLSE soliton propagating through a dispersion decreas
fiber is compressed@27#. In the limit when the gap soliton is
outside the band gap, the coupled mode equations redu
the NLSE with varying dispersion@28#, and thus we expec
that an incident gap soliton is compressed as well. Numer
simulations confirm this, and show a compression ratio
nearly three for the gap soliton width. A pulse compress
scheme of this type was recently discussed in Ref.@29#.

Figure 3 shows a comparison between the EPP trajec
and the exact results for a gap soliton propagating dow
ramp withDd50.05. Note that initially the EPP trajectory i
accurate, but fails atx'10, with the EPP trajectory reachin
a final velocity while the exact results suggest that the g
soliton continues to accelerate. The difference can be un
stood by recalling that earlier we showed that conserva
of energy limits the maximum velocityxm a gap soliton may
achieve according to the EPP@see Eq.~13! and Fig. 1#. The
existence of a maximum velocity can be seen in Fig.
which shows the EPP trajectory levelling off after reachi
xm .

The full numerical simulations in Fig. 3 show the fie
distribution reaching velocities exceedingxm . As discussed
in Sec. II, this may occur in one of two ways: either the g
soliton sheds energy, allowing it to move to a different co
tour in Fig. 1, but remaining a gap soliton, or the field d
tribution ceases to be a gap soliton. In either case the E
fails. From numerical simulations it appears that the gap s
ton behavior is a combination of the two, initially sheddin
energy while retaining its shape but quickly breaking up in
multiple pulses. This is illustrated in Fig. 4, which shows t
field distribution after propagation for an initial gap solito
with r51 andx50.5. Note also the long energy tail whic
has been shed by the gap soliton. Thus our EPP accura
predicts the gap soliton’s trajectory ifDd,0, and is initially
accurate ifDd.0. In the latter case the gap soliton event
ally breaks up, and thus the failure of our method is n
surprising.

One can also consider gratings that have bothk and d
ramps. Then the force felt by the EPP particle is the sum
the right hand side of Eqs.~20! and ~26!. For such gratings

FIG. 3. Trajectory showing velocity~in units of vg) vs the di-
mensionless position~normalized in terms ofk) for a gap soliton.
The solid line gives the exact results and the dashed line the
trajectory. The grating hask51 and Dd50.05. Initially the gap
soliton hasr52 andx50.5.
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the EPP describes the motion of the gap soliton with
accuracy similar to the two separate cases considered ab
As no new features are introduced, we do not present res
but instead turn to a different type of grating.

IV. PROPAGATION THROUGH LOCALIZED
PERTURBATIONS

By combining two ramps we can make a grating whi
has a localized defect given by

Vi j ~x!5H 0, uxu.a

~x1a!D i j , 2a<x,0

~a2x!D i j , 0<x,a,

~27!

where 2a is the width of the perturbation, and the strength
given by the Hermitian matrixD i j . The off-diagonal entries
rie

p
a
to
w

y

n
ve.
lts,

D125D21* describe changes in the strength of the grati
while the diagonal elements describe a shift in the Bra
condition. Henceforth we denote the off-diagonal eleme
by Dk , and the diagonal elements byDd . Note that defect
~27! is symmetric, though this is not essential. We chose
form since it is the simplest localized defect, and since
EPP integrals can be solved exactly. We concentrate on
as we expect that general types of behavior of gap soliton
the presence of more general defects can be captured by
model.

For defect~27!, P evolves according to

dP
dt

5Dk f 11Dd f 2 , ~28!

where
f 152
a2sinr

Gxg
F 2 sinh~22gk sin@r# x̄!

cosr1cosh~22gk sin@r# x̄!
2

sinh„22gk sin@r#~ x̄1a!…

cosr1cosh„22gk sin@r#~ x̄1a!…
2

sinh„22gk sin@r#~a2 x̄!…

cosr1cosh„22gk sin@r#~a2 x̄!…
G

~29a!

and

f 252
2a2

Gx
F2 tan21Xtanh~2gk sin@r# x̄!tanS r

2D C2tan21Xtanh„gk sin@r#~a2 x̄!…tanS r

2D C
2tan21Xtanh„2gk sin@r#~a1 x̄!…tanS r

2D CG . ~29b!
. In
ct re-
la-
led

ex-
ters
ntial
tial

a
be

he

ted.
ted
m
to

-
zero

the
. 5.
Sincef 2 represents twod ramps, Eq.~29b! is very similar to
the right hand side of Eq.~26!. Similarly, f 1 represents twok
ramps, and resembles the right hand side of Eq.~20!.

To illustrate the accuracy of the EPP for perturbation~27!,
we show the case whereDk520.02,Dd520.04,k51, and
a55. Figure 5 shows the exact and approximate trajecto

FIG. 4. Field distribution as a function of position for a ga
soliton initially with r51 and x50.5 after propagation along
ramp withDd50.05. Note that the gap soliton has broken up in
two pulses along with a long radiation tail. The dashed line sho
u f 1u2, the dotted lineu f 2u2, and the solid line the total intensit
u f 1u21u f 2u2.
s

for a gap soliton withr51.5 and a varying initial velocity.
The two dashed vertical lines show the perturbed region
all cases the agreement between the EPP and the exa
sults is very good, the only difference being a slight oscil
tion in the exact results after the gap soliton has trave
through the perturbation.

The trajectories in Fig. 5 suggest that the gap soliton
periences a potential barrier, since it slows down as it en
the perturbed region. As discussed, we can define a pote
for the EPP force, and, as expected from Fig. 5, the poten
now consists of a single peak near the origin. Since ford
ramp an analytic expression for the potential cannot
found, f 2 cannot be integrated, unlikef 1. Calculating the
potential numerically, we find that the peak height of t
potential for Fig. 5 is 0.226 which, using Eq.~22!, implies
that gap solitons with a velocity less than 0.394 are reflec
Numerical solutions of the EPP give a maximum reflec
velocity of 0.355, which is identical to the value found fro
full simulations of the NLCME. The small discrepancy is
be expected since the conditionuvu!1 is not satisfied every-
where.

It is well known how a point defect in the grating intro
duces a resonant state within the band gap, leading to
reflection at the resonant frequency@30#. For gratings with a
localized defect the same holds true. In Fig. 6 we show
reflection spectrum for a grating with parameters as in Fig

s
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The effect of the resonant state is indicated by the das
portion of the curve; it clearly shows a reflection zero with
the band gap of the grating. The effect of this localized st
can also be seen in the propagation of gap solitons wi
center frequency near the resonance. Figure 7 shows
phase portrait for a gap soliton withr52.733 13 andx
50.35. These parameters ensure that the center frequen
the gap soliton coincides with the resonance. Compare
previous results, we see a marked difference between e
and EPP results: the gap soliton is reflected with a differ
velocity, and undergoes considerable oscillations. Most
these differences are due to the increased radiation los
Due to the resonant zero the low intensity wings can pro
gate through the grating instead of being reflected back
ward the center of the gap soliton. This interaction with t
defect state causes the soliton to move off the EPP cont
and our approximation thus breaks down.

So far we have concentrated on the case whenDk andDd
are negative. IfDk andDd are both positive, the potential hi
becomes a potential well. Gap solitons thus speed up as
enter the perturbed region. The accuracy of the EPP in
region is similar to the case of a potential hill. The presen
of a potential well allows for trapped solitons which oscilla
around the center of the grating, as well as stable station
solutions centered atx50. Figure 8 shows the phase portra

FIG. 5. Trajectory showing velocity~in units of vg) vs the po-
sition of a gap soliton withr51.5. The solid line gives the exac
results, and the dashed line the EPP trajectory. The two da
vertical lines indicate the perturbed region.

FIG. 6. Reflection vs detuning in units ofk for a grating with a
localized defect, with parameters given in the text. The defect le
to a zero reflection, as indicated by the dashed line.
ed

te
a
he

of
to
act
t
f

es.
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ur,
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ry

for a gap soliton withr51.5 trapped inside a well withDk
50.02, Dd50.04, anda55. The solid line shows the exac
trajectory, while the dashed line shows the EPP trajecto
Note that the EPP particle travels further up the side of
wall compared to the exact results. Although both the E
particle and the gap soliton started atx̄50 with x50.3, the
gap soliton never regains its initial velocity, instead settli
down to a smaller limit cycle with a maximum velocity o
about 0.278.

Earlier, we stated that linear barriers as discussed here
typical of the more general class of localized defects, a
thus the understanding of such defects would lead to a m
general understanding of gap soliton propagation. As an
ample, we examined gap soliton propagation through
Gaussian defect given by

Vi j ~x!5D i j ae2~x2/a2!4 ln 2. ~30!

This defect has the same peak strength and full width at
maximum as the linear barrier given by Eq.~27!. In Fig. 9
the solid line shows gap soliton trajectories for a Gauss
barrier withDk520.02,Dd520.04, anda55. The dashed
lines show the trajectories for the linear barrier with the sa
parameters as was used in Fig. 5. The vertical lines ag
indicate the position of the perturbed region.

ed

ds

FIG. 7. Phase portrait showing velocity~in units of vg) vs nor-
malized position for a gap soliton whose center frequency coinc
with the frequency of the resonant zero of the grating. The solid
shows the exact result, while the dashed line shows the EPP
proach.

FIG. 8. Trajectory showing velocity~in units of vg) vs normal-
ized position for a gap soliton withr51.5. The solid line gives the
exact results, and the dashed line the EPP trajectory.
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Although for the Gaussian barrier we are not able
evaluate the integrals in the EPP equations of motion a
lytically, Fig. 9 suggests that the Gaussian barrier beha
qualitatively the same as a linear barrier. Extending this,
suggest that for a sufficiently smooth barrier the only qu
tities of importance are the peak height and barrier wid
Gap solitons thus behave qualitatively the same when
turbed by a wide range of barriers. Furthermore, we can
proximate all such barriers by a linear barrier and use
EPP formalism to understand the results in these cases.

V. GRADUAL INTERFACES

Earlier @18#, we concentrated on abrupt interfaces b
tween two uniform gratings. As a last example we consi
two semi-infinite uniform gratings, with the paramete
changing continuously betweenx52a and x5a. In line
with the notation used in Ref.@18#, we define

k5H k l , x,2a

k l1
k r2k l

2a
~x1a!, 2a<x<a

k r , x.a.

~31!

FIG. 9. Trajectories showing velocity~in units of vg) vs nor-
malized position for a gap soliton withr51.5, in the presence of a
Gaussian barrier. The solid line gives the exact results, and
dashed line the results for a linear barrier.
a-
es
e
-
.
r-
p-
e

-
r

Hence, for gap solitons whose center positionx̄ satisfiesx̄
,0, we have the perturbation matrix

V12~x!5V21~x!5H 0, x,2a

k r2k l

2a
~x1a!, 2a<x<a

k r2k l , x.a.

~32!

Similarly for solitons lying to the right of the origin, we hav

V12~x!5V21~x!5H k l2k r , x,2a

k r2k l

2a
~x2a!, 2a<x<a

0, x.a.

~33!

In both casesV115V2250.
Substituting Eq.~32! into Eq. ~10b!, we obtain

dP
dt

5
k l2k r

2a

a2sinr

gGx

3F sinh„2gk lsin@r#~a2 x̄!…

cosr1cosh„2gk lsin@r#~a2 x̄!…

1
sinh„2gk lsin@r#~a1 x̄!…

cosr1cosh„2gk lsin@r#~a1 x̄!…
G . ~34!

When x̄.0 we obtain a similar expression but withk l re-
placed byk r . Taking the limit of the right hand side of Eq
~34! as a→0, we find an expression that is identical to E
~32! in Ref. @18# for dP/dt for an abrupt interface. Since w
know that the EPP gives accurate results for an abrupt in
face, our gradual model is expected to be accurate for sm
a. Also in the limit thatk r@k l anda@1, the grating appears
nearly identical to thek ramp discussed above, as in th
limit the gap soliton only ‘‘sees’’ the ramp and not the un
form grating behind it.

Whenx→0, Eq.~34! does not depend onx, and Eq.~15!
is then valid. The resulting potential is

he
Ul~ x̄!5
k r2k l

2a

a2

2k lGx
F lnS cosr1cosh„2k lsin@d#~a1 x̄!…

cosr1cosh„2k lsin@d#~a2 x̄!…
D 14k la sinrG , ~35a!

which is valid for x̄,0. For x̄.0 we have

Ur~ x̄!5
k r2k l

2a

a2

2k rGx
F lnS cosr1cosh„2k rsin@d#~a1 x̄!…

cosr1cosh„2k rsin@d#~a2 x̄!…
D 24k ra sinrG1C. ~35b!
n

he
dly
Thus the asymptotic heightH of this potential is

H52a2
k r2k l

Gx
sinr, ~36!
which is independent ofa, and is identical to the expressio
for an abrupt interface~see Fig. 3 in Ref.@18#!. Thus the final
velocity of the gap soliton is independent of whether t
grating changes linearly or discontinuously, which is broa
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consistent with Sec. IV. All that is important in determinin
the final velocity, assuming that the gap soliton is not
flected, is the difference in parameters of the two unifo
gratings.

In Fig. 10 we show a variety of trajectories withr52,
k l51, andk r51.1, witha52.5. It should be compared wit
Fig. 5 of Ref.@18#, which shows similar trajectories for a
abrupt interface. The key difference is the trajectory
x50.2, which shows significant oscillations after reflectio
The other trajectories at the gradual interface show fe
oscillations than at the abrupt interface. The reasons for
increased oscillations in the reflected trajectory are not
derstood at present.

Figure 11 shows the associated potential@Eq. ~35!#. The
asymptotic heightH of the gradual interface potential i
0.121 24, corresponding to a maximum reflected velocity
0.237. Numerical integration of the EPP equations show
gap solitons with a velocity of less than 0.238 are reflect
while numerical simulations give 0.235. For the correspo
ing abrupt interface gap, solitons with a velocity of less
0.242 are reflected, which is somewhat higher than for
gradual interface. This discrepancy can be understood f
the graphs of the two potentials~Figs. 11 and 3 in Ref.@18#!.
For the gradual interface the maximum height of the pot
tial is roughly the same as the asymptotic height. In contr
for the abrupt case the maximum height is higher than
asymptotic height. Similarly the minimum of the potenti
for the abrupt case is less than for the gradual case.
difference also allows stable stationary solutions to exist
the abrupt interface but not for the gradual interface.

VI. CONCLUSIONS

The EPP described in Ref.@18# and extended here is
powerful tool for understanding gap soliton propagati
through nonuniform gratings. In the low velocity limit, th
EPP equations reduce to that of a clasical particle movin
an external potential, determined by the nonuniformity. A
though we have only examined a few highly idealized gr
ing types, the insights gained should be applicable to m
general geometries. We showed that for a localized de

FIG. 10. Trajectories showing velocity~in units of vg) vs nor-
malized position for a gap soliton withr52, in the presence of a
gradual interface witha52.5,k l51, andk r51.1. The solid line
gives the exact results, and the dashed line the results for a li
barrier.
-
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there is no significant difference between a Gaussian de
and a linear one, for which exact results are available. T
suggests that the rough gap solitons behavior depends
on the general features of the perturbation and not the det
This is further confirmed by the results in Sec. V for a
abrupt interface, which are nearly identical to those deriv
in our earlier paper for an abrupt interface.

We should mention that the manipulation of gap solito
by propagation through a nonuniform grating is very attra
tive. An example is the gap soliton compression in a grat
with a d ramp, which is similar to soliton compression in
dispersion-decreasing fiber~see Sec. III B!. Note that the re-
quired grating is of a standard type, and can be written i
standard photosensitive fiber@29#. In contrast, dispersion
decreasing fiber is highly specialized. Moreover, becaus
the strong coupling between the electric field and the gra
at frequencies around the Bragg resonance, the magnitud
the perturbation in a grating can be made much larger t
the perturbation in untreated fiber.

A feature of our full simulations is that in many cases t
perturbed gap soliton starts oscillating. It is well known the
retically that oscillation modes of gap solitons exist@24#;
however, these have not yet been observed. Reflection o
perturbation would appear to be a possible way to set
such modes experimentally, as the gratings required can
ily be fabricated. Furthermore in some cases these osc
tions grow and eventually destroy the soliton in line wi
recent predictions@25#. This instability does not appear i
our model, as we have assumed that the gap soliton ha
internal degrees of motion.

Throughout this work we have assumed that the gratin
lossless. This is not a necessary condition for the EPP
work but rather it has been shown that the EPP can be
cessfully applied to gratings with gain and/or loss, and he
we did not consider it here. Similarly we have not examin
periodic perturbations, since in that case it has been sh
that a superenvelope approach to the coupled mode e
tions is very successful, and allows analytic solutions to
found @31,32#.

FIG. 11. Graph of the potential for a gradual interface. He
k l51,k r51.1, anda52.5.
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