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Approximate method for gap soliton propagation in nonuniform Bragg gratings

Neil G. R. Broderick and C. Martijn de Sterke
School of Physics, University of Sydney, Sydney 2006, Australia
and Australian Photonics Cooperative Research Centre, Australian Technology Park, Eveleigh, 1430, Australia
(Received 10 July 1998

An effective particle picture developed earlier for gap soliton propagation in piecewise uniform gratings is
extended to treat gratings that vary gradually. In particular, we consider gratings in which the strength or the
Bragg frequency varies linearly with position. We use this to analyze propagation in more complicated struc-
tures corresponding to localized grating defects, and gradual interfaces between two different gratings.
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[. INTRODUCTION cies outside the band gap, grating solitons, where the grating
is highly dispersive, have also attracted considerable atten-

Earlier this year Taverner and co-workers reported theion [3-5].
first observations of gap soliton generation in a Bragg grating Predicting the behavior of gap solitons in the presence of
at frequencies within the photonic band ddp?2]. These ex- small perturbations requires some analytic approximation to
periments compliment those of Eggleton and co-workershe NLCME's, since they cannot be solved exactly. Simi-
[3-5], who examined propagation through Bragg gratings afarly, perturbations to the nonlinear Schioger equation
frequencies outside the band gap, where the grating is trangNLSE) are also rarely tractable. Therefore, a wide range of
missive but highly dispersive. In the experiments by Tav-approximate methods has been developed to deal with soli-
erner and co-workerEl,2] and in the most recent ones by ton propagationfor example in Ref[14]). Most of these
Eggletonet al. [5], nonuniform gratings were used to opti- rely on the fact that if the field can initially be described as a
mize the coupling of the light into the grating. Furthermoresoliton, then it remains a soliton. As solitons are character-
both sets of experiments were performed in relatively shorfzed by a small number of real parameters, the perturbations
gratings(8 cm in Refs[1,2], 6 cm in Ref[5]). Thus, inthese |ead to a set of ordinary differential equations for the soliton
experiments, pure soliton propagation effects are difficult tgparameterg§14]. This is a considerable simplification com-
distinguish from effects due to soliton formation. However, pared to the full problem, which requires solving a nonlinear
in future experiments, gap soliton propagation over longepartial differential equation. Such methods can be described
lengths is likely to be studied; note that currently the maxi-as effective particle picturg€PP’9, since they represent the
mum available length for a fiber Bragg grating is roughly continuous field distribution as a point particle with a limited
1 m[6]. number of degrees of freedom.

In the experiments of Taverner and co-workers the grating The key difference between the NLSE and NLCME'’s is
length was 8 cm, as this was the maximum length ovethat the NLSE is integrablgl5] whereas NLCME’s are not.
which uniformity of the Bragg frequency could be assured.This suggests that NLSE solitons are more robust than gap
In writing longer fiber Bragg gratings this uniformity de- solitons, and hence that an EPP would be more accurate in
creases due to random refractive index fluctuations, as wethat case. However, previously, gap soliton propagation in
as to temperature drifts during the writing process. Thus ifthe presence of uniform gain and loss was succesfully treated
gap soliton propagation over long distances is to be experiusing an EPR16,17), and we ourselves examined gap soli-
mentally observed, then gap solitons must be stable to smaibn propagation across abrupt interfaces using a similar tech-
perturbations. nique [18]. Hence it is natural to apply the EPP to more

Light propagation in nonlinear Bragg gratings is usually general perturbations. The EPP we developed is similar to
described using the nonlinear coupled mode equationgne used by Aceves, Newell, and Molong4] to treat
(NLCME'’s). These apply to botly® material{7-9 and to  NLSE soliton propagation across an interface. The method
x'? materials in the cascading limii.0]. Gap solitons are was also used by Capobianebal. to treat propagation be-
solitary wave solutions to the NLCMIEL11-13, and can tween two quadratically nonlinear materi@lg]. In this pa-
propagate at any speed between zero and the speed of lightjper we extend our earlier worKl8] to show that the EPP
the uniform medium. Much of the interest in gap solitons haswvorks for nonuniform gratings whose parameters change
focused on those solutions whose frequency content is insideontinuously.
the grating’s band gap2,8], where, in the linear regime, The outline of this paper is as follows: In Sec. Il we
light cannot propagate. However, gap solitons with frequeneutline the EPP we derived previously, and discuss some of

its more general features. We then use the EPP in Sec. Il to

treat gap soliton propagation in simple structures, before

*Present address: Optoelectronics Research Center, University cbmbining these structures to treat more complicated pertur-
Southampton, Southampton, U.K. bations in Secs. IV and V.
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Il. EFFECTIVE PARTICLE APPROACH where y=1/\1—? is the Lorentz factor. Note that if

=T, thena®—3% asy—0. Also,a—0 asy— *+1.

The gap soliton velocity is given byvy, where y e

(g_— 1,1]. The center frequency is given b =y« cosp),

and p is restricted to the ranged,=]. Note that the center

gequency of the gap soliton can be arbitrarily far from the
ragg frequencyw,. For |Q|<k the center frequency is

Light propagation in Bragg gratings is usually describedlﬁS
by the nonlinear coupled mode equatid83. However, in
the presence of perturbations we need to modify these a
cordingly. Using a complex matri¥/;; to describe the per-
turbations, the modified coupled mode equations are writte

as(18] within the grating’s band gaf8].
of, i of, For the application of the EPP it is important that the
i— 4+ — ——+ kf_+20,|f_|?f, solutions depend on four parametégsxg, p, andy. As we
X vg It are interested in propagating solitons, we refdiptandx, as
+T L2+ V() fL+Vip(x)f_=0, (13 the initial conditions, while the solitons themselves are char-
acterized byy, the soliton velocity in units of 4, andp, the
of . i of. soliton amplitude. The initial conditiot, defines the soli-
—i W'f‘ U—7+Kf++21“xlf+|2f_ ton’s absolute phase, and is only important for problems
9 dealing with multiple solitons, which we do not consider
+Tf [P+ Vo) f + V() f =0, (1b)  here. Parametex, is unimportant, providedxo|>0, as we

only consider perturbations to a uniform grating which begin

wheref. are the slowly varying envelopes of the forward near the origin. If the gap soliton is initially sufficiently far
and backward propagating waves at the Bragg frequa}acy from the perturbation, the precise initial pOSitiOﬂ does not
The group velocity, which determines the speed of the matter andxo| may be taken to be-< for convenience.
fields in the absence of a grating, is set equal to unity by a In the presence of perturbations analytic soliton solutions
rescaling of the timet. Parameterx describes the grating do not usually exist. However, if the perturbations are small
strength, and’s and ', determine the strength of the self- then we can make the EPP assumption that we can always
and cross-phase modulations, respectively. In optical fiberdescribe the field as a gap soliton. Thus in the EPP approach
with a x® nonlinearity(and most other material§ =T, . we are interested in the time evolution @fand y, as these
However the NLCME's also describe light propagation uniquely define the gap soliton given the initial conditios
through ay® material, and in that case the valuelaf/T', andtg. Ou_r aim is thus to de_rlve evoluuon_equatlons for
is determined by the frequencies involved and can take aRnd x. This was done previously for a different class of
most any valug20]. perturbationg18], and so only the salient points are explic-

Since in Egs(1) we assumed that the perturbations areitly treated here. The EPP is derived by considering a small
proportional to the fields, the matri is unable to represent Set of moments of the field which in the absence of pertur-
the effects of a driving term. However, most other perturbaations completely characterize the gap soliton. The mo-
tions can be represented in this manner. We note that wheRents, which are analogous to those used in Ref], are
the perturbation is nonlinear, the elements\bflepend on  given below, where they are defineg] and then evaluated
the envelopes themselves. We restrict our analysis to a Hefor & gap soliton €). They are the energ,
mitianV, as this represents a lossless medium. The effects of
gain and loss have been treated previol4,17, and our +oo 2pa?
analysis reproduces their results in the appropriate limit. QEJ (If 42 +[f_[?)dx= T 7

In the absence of any perturbationd/;;(=0), the o X
NLCME's possess the following gap solitons solutions found

by Aceves and Wabnitgl1]: the average positioR,
k [1xx va - ] [+
f+(x’t)_i“\/2rx(ﬂ> one xzaf_ X(f 2+ Ddx=xotxti  (®
X secli9xipl2)e @t 2

. . » and the momenturt®,
where the nonlinearity was taken to be positive. Further,

6= yk sin(p)(X—Xo— xt), 3 E—if+w(fiﬁxf++ftaxf7)dx
o= yk cogp)(xXx—t—to), 4 .
2KXY , . Axlsxy” , .
_a = a‘sinp+ ————a"(sinp—pcosp). (9)
L I 1+x2 c I'y Ir?
a=|1+ T, 1—)(2 ) 5

Both Q and P are conserved quantities of the unperturbed
2T w/[2T (1~ 02+ T (1+v?)] equationg21,27. They have the property that for a single
, (6) gap soliton, knowledge of these moments allows one to re-

- e20+ eiip
e'7=| —
construct it up to a constant phase factor.

620+ eiip
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Using the coupled mode equatiof&gs. (1)] the time 1
derivatives of moment$7)—(9) can be calculated and are 0s
given in full in Ref.[18]. Here we only give the most rel- )
evant: 06
dQ x
04
H—O, (109 /
02
a:j_x |f+|2(9_x+|f—|2(?—x+29‘i f+f’iﬁ—x dx. o5 1 5 2 a5 3

p

. . . FIG. 1. Contour plot of constant energy as a functionpof
Equation(10a expresses energy conservation, while Eq.5nq X.

(10b) expresses the effect of the perturbation on the gap soli-

ton. Equationg10) are exact; however, to evaluate the inte-py x— xx(—). With these normalizations all quantities,
grals we must know the field at all times, which involves jncluding the fields in Eqs(1), are dimensionless.

solving the full NLCME. Instead, as mentioned, we assume
the field always remains a gap soliton. Further simplifica-
tions can be made sinaQ/dt=0, we can expresg(t) in

(10b)

General properties of the EPP

terms of x(t) and the initial energy, as Equation(7) shows that the energ® of a gap soliton is a
function of bothy andp. Since in the EPP this energy is
Qol', assumed to be conserved(t) and p(t) are constrained to
p(t)= > (1)  move on contours of equal energy in the ¥) plane. These
2a(x(1)) contours are shown in Fig. 1, and their analytic form is given

in Eq. (11). Note that each contour has a maximum velocity

leading to the final EPP set of equations: xm Which is reached whep= . Inverting Eq.(7) when

d?_ b p=m gives
gt X 12 NI .
= y 1
i Xm= N 47T Qo 2,Qo 13
HZF(X)’ (12 where Q is the initial energy of the gap soliton. Equation

(13) shows that, in the EPP approximation, the smaller the
P=P(x). (120 initial energy of a gap soliton, the higher the maximum ve-
locity it can attain. If our numerical simulations show that an
HereF is the “force” on a gap soliton found by evaluating initial gap soliton has accelerated past then either it has
the integrals in Eq(10b). Note that our method explicitly shed energy or the field has ceased to be a gap soliton. In
calculate rather than inferring it from the values gfand  either case the EPP is not valid. This arises in Sec. IlI B, and
p. This is done for clarity since in general the force on theis discussed in more detail there. In the other cases we con-
gap soliton depends on its position. Henceforth, when wesidered, the velocity of the gap soliton does not approach
refer to solving the EPP equations we mean solving Eqsy,, and our EPP remains valid.
(12). Note that the perturbation manifests itself through the In the low velocity limit of the EPP ¥<1) we can ap-
forceF. Thus, whenever analyzing a nonuniform grating us-proximate Eq.120 by
ing the EPP, the first step is always to evaluate the integral in
Eq. (10b to find the EPP force. As expected, the EPP force 16k
depends only on the gradient of the perturbation matrix, P= or2 (sinp—p cogp)) x=my;, (14)
since whenV is a constant Hermitian matrix, Eqél) are X
identical to the NLCME's. Having derived the EPP we nextyherem does not depend on velocity, and can be considered
discuss some general properties of the EPP before presentiggbe the “mass” of the soliton in analogy with Newtonian
some applications. mechanics. In this low velocity limit our EPP equations are
Here we are concerned with gap solitons propagating iRhen formally identical to Newton’s equations. If in this limit

nonuniform gratings of infinite extent. It is thus useful to the forceF depends on|y on position, then a potenﬁmx)
reduce the parameter space as much as possible. For a ugin be defined g8]

form grating, one can rescale the NLCME's, resultingsin
=1 [8]. Similarly, one can sdf.=T's/T", andI",=1, with- U= — fx
out loss of generality. For a nonuniform grating this rescal-
ing results ink(x) =1 at a single point which may be chosen
arbitrarily. We can thus restrict ourselves to gratings forThe EPP equations can then be solved exactly, giving
which «(x)—1 andI',(x)—1 asx— —. In fact, for the )

ratings we conside(x)=1 if x<—a, where typicallya N2 2_“ _
% ordgr unity. We simi(lazly introduce a dimensigrﬂess¥ength X7 x (%)™ =0 (U (%) ~U 00), (16

F(x")dx'. (15
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wherexg is the initial position of the gap soliton. hyperbolic functions. This is so since for our ansatz we took
Given a maximum height) of a potential, then Eq.16)  the gap soliton solutions for a uniform grating of strenggh
implies that gap solitons with velocities less than WhenA , is sufficiently small,«(x) does not vary consider-
ably over the width of a gap soliton, and thus we can replace
Yu= /Z_U 17) o by x(x) in Eq. (20). This results in a slight improvement
m in the EPP accuracy.

.- . For x>0 the right hand side of Eq20) approaches a
are reflected. Note that for a sufficiently large height, Eq. . ,

X ; ; : . constant. Wherp<7/2 the sign ofdP/dt is always nega-
(17) predicts a velocity for which the potential approxima éive, implying that the soliton is repelled by the ramp, as

tion is no longer valid. Thus care must be taken to ensur ed. | trast. whep> /2 the f th
that the results are not used outside the velocity regime foyxPected. In contrast, whep=m € force on the gap

which the potential approximation is valid. soliton is positive forx<xo, where

The class of nonuniform gratings is too large to test the
EPP on every different type. Instead we restrict ourselves to N 1 cos _1( —(1+cosp) 21)
a few generic grating types which can be fabricated, and 0" 2yksinp” 2cosp |’

which let us develop a general understanding. A further re-
striction is that we only consider gratings for which the in- at which pointdP/dt changes sign and the gap soliton is
tegral for the EPP forcEq. (10b)] can be evaluated exactly. repelled thereafter. Thus in the EPP picture, at least, all soli-
In this case the EPP equations reduce to two ordinary differtons are reflected by the ramp. We note that previously we
ential equations which can be efficiently solved numerically found that, for an abrupt interface, stationary solutions only
Otherwise, finding numerical solutions to the EPP equationgxist for p> 7/2, and we were able to find exact solutions to
is as computationally intensive as the full numerical simulathe NLCME’s[18]. However, unlike the abrupt interface, we
tions. The simplest class of gratings that fulfill these require-have been unable to find exact analytic expressions for sta-
ments are gratings whose parameters are piecewise linetionary solutions in this case.
functions of position. Such gratings are considered in Sec. Recall that for low velocitieg= y and that the EPP equa-
[l tions are then formally identical to Newton’s equations of
motion. For the force in Eq20), the low velocity approxi-
[ll. PROPAGATION ALONG A RAMP mations leads to the potential

A. A Kk ramp

In the perturbation considered here, the grating strength U(X):azz_rx[‘“‘ sin(p]x
varies linearly with position forx>0, but the Bragg fre-

quency is constant. Henaeis given by +In(1+ 26 2% Sinlelxcogp + 4k SN (22)
K(X)= Ko, Xx<0 (18) In this limit thelelocity)( of the gap soliton is given by Eq.
kot AX, X>0, (16). For largex we can approximate the potential in Eqg.
(22) by

whereA,>0. We take the grating to be infinitely long with
the strength increasing without bounds»as . Since, as . A .
we show below, any such incident soliton is ultimately re- U(X)%aZF—KZK sin[ p]x. (23
flected, the idealization of the grating strength growing with- X
out bound is not essential. However, the time spent in the ) o
perturbed region depends on the gap soliton’s parameterdlote that whenp> /2 the potential has a minimum at a
Such a grating could thus act as a nonlinear mirror with thé?0Sition given by Eq(21), suggesting that stationary solitons
time delay varying nonlinearly with the incident energy. ~ Might exist and be stable. _ ,

For the grating described in Eq18), the perturbation We now have two approximations to the trajectories: the

matrix VV vanishes forx<0. Forx>0 we have exact EPP trajectory obtained by solving E80) numeri-
cally; and a low velocity approximation, following from the

0 Ax potential in Eq.(22). Since our numerical simulations show
“lax ol (19 that all incident gap solitons are reflected, the main feature of
x the trajectory is the position of the turning point. It describes

Substituting Eq(19) into Eq. (10b) we obtain[23] how far the g_ap_soli_ton ventures into the perturbed regi(_)n,
and gives an indication of the time it spends there. Equation
dp A,.a? sinp (23) leads to the approximation for the turning poiqt
dt y Ty
_ FmeZ (24)
. . X ~= T EE—
y sinh(2yrosin{ p]x) ) o " 207 ,sinp
cosh2ykpsin p]x) +cosp

o wheremwas defined in Eq(14). Figure 2 shows the turning
wherex is the gap soliton locatiofEqg. (8)]. Note that in Eq.  point versus velocity, for all different methods. On this scale
(20) only xy and notx(x) appears in the argument of the they are indistinguishable, indicating that the exact EPP is in
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FIG. 2. Normalized turning point vs the incident velocity in FIG. 3. Trajectory showing velocitgin units ofvg) vs the di-
units of vy for a gap soliton withp=2, and for a grating witk  mensionless positiotormalized in terms o) for a gap soliton.
=1 andA,=0.01. The normalized positiok=x« is dimension-  The solid line gives the exact results and the dashed line the EPP
less. trajectory. The grating hag=1 and A ;=0.05. Initially the gap

soliton hasp=2 andx=0.5.

good agreement with the numerical result. Furthermore, th
low velocity approximation to the EPP holds for the veloci-
ties considered in Fig. 2.

%\s the gap soliton continues to propagate, the group velocity
of its center frequency asymptotically approachgs Now a

In the numerical simulations of NLCME's with & ramp, NLSE soliton propagating through a dispersion decreasing

we found that upon reflection the gap soliton would begin tof'ber. is compresse[R7]. In the limit when the 9ap soliton is

oscillate[24]. These oscillations seem to be a generic re_out5|de the band 9ap, th? coupled mode equations reduce to
sponse of gap solitori&5] (and nonintegrable systerfi26]) thetNLS_E _v(;nthtvarylngl_?|sp_erS|0[128], ancé thus V\Ille Nexpect_ |
to perturbation and in some cases leads to the destruction H?a an incident gap sofiton IS compressed as wetl. Numerica
the soliton. As discussed in RdfL8], the EPP assumes the simulations confirm this, and show a compression ratio of

gap soliton has no internal degrees of freedom, and henc%early three for the gap soliton Wid.th' A puls:_e compression
cannot describe the gap soliton oscillations. schgme of this type was rec_ently discussed in Fag]. .
Figure 3 shows a comparison between the EPP trajectory

and the exact results for a gap soliton propagating down a
ramp withA 4=0.05. Note that initially the EPP trajectory is
The other type of grating we consider is one where theaccurate, but fails at~10, with the EPP trajectory reaching
Bragg frequency varies linearly for>0. Thus the perturba- a final velocity while the exact results suggest that the gap
tion matrix V vanishes fox<0, whereas, fox>0, soliton continues to accelerate. The difference can be under-
stood by recalling that earlier we showed that conservation

B. A é ramp

_ Ax 0 25) of energy limits the maximum velocity,, a gap soliton may
0 Ax/ achieve according to the ERBee Eq(13) and Fig. 1. The
existence of a maximum velocity can be seen in Fig. 3,
Solving the EPP integrals leads to which shows the EPP trajectory levelling off after reaching
Xm:-
dP_ 2a%A; P o tanh — v sin o T tart The full numerical simulations in Fig. 3 show the field
dt Iy 2 an anf(— yx sin[px) anll distribution reaching velocities exceeding,. As discussed

(26) in Sec. Il, this may occur in one of two ways: either the gap
) soliton sheds energy, allowing it to move to a different con-
Note that the EPP force never changes sign, and approachggyr in Fig. 1, but remaining a gap soliton, or the field dis-
a constant fox>0. This implies that forA ;<0 gap solitons tribution ceases to be a gap soliton. In either case the EPP
are always repelled by the barrier, while fd>0 the gap fails. From numerical simulations it appears that the gap soli-
soliton’s velocity increases. ton behavior is a combination of the two, initially shedding
WhenA ;<0 the gap soliton moves deeper into the bandenergy while retaining its shape but quickly breaking up into
gap as it propagates towarde. This causes it to be re- multiple pulses. This is illustrated in Fig. 4, which shows the
flected by the grating. As for the case okaamp, the EPP field distribution after propagation for an initial gap soliton
accurately predicts the position of the turning point. We notewith p=1 andy=0.5. Note also the long energy tail which
that, in the low velocity limit, potential Eq15) for this EPP  has been shed by the gap soliton. Thus our EPP accurately
force is valid. However, we cannot find a closed-form ana-predicts the gap soliton’s trajectory A ;<<0, and is initially
lytic expression for the potential. Thus finding the trajectoryaccurate ifA s>0. In the latter case the gap soliton eventu-
of the gap soliton using the potential is computationally asally breaks up, and thus the failure of our method is not
time consuming as solving the EPP equations exactly. surprising.
WhenA ;>0, the gap soliton moves away from the center One can also consider gratings that have betand &
of the band gap as it propagates through the grating. Evemmamps. Then the force felt by the EPP particle is the sum of
tually its original center frequency is outside the band gapthe right hand side of Eq$20) and (26). For such gratings
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the EPP describes the motion of the gap soliton with am\,,= A%, describe changes in the strength of the grating,
accuracy similar to the two separate cases considered abowghile the diagonal elements describe a shift in the Bragg
As no new features are introduced, we do not present resultgondition. Henceforth we denote the off-diagonal elements

but instead turn to a different type of grating. by A, and the diagonal elements by;. Note that defect
(27) is symmetric, though this is not essential. We chose this
IV. PROPAGATION THROUGH LOCALIZED form since it is the simplest localized defect, and since the
PERTURBATIONS EPP integrals can be solved exactly. We concentrate on this

as we expect that general types of behavior of gap solitons in

By combining two ramps we can make a grating whichy,o nresence of more general defects can be captured by this
has a localized defect given by

model.
0, |x>a For defect(27), P evolves according to
Vii(x)=9 (x+a)d;, —asx<0 (27) 4P
(a—x)4;;, 0sx<a, E=Akf1+A5f2, (28

where 2 is the width of the perturbation, and the strength is
given by the Hermitian matrid;; . The off-diagonal entries where

1E__azsinp[ 2 sinh(— 2y« sin[p]x) ~ sinh(— 2y« sin p](x+a)) ~ sinh(— 2y« sin p](a—x))
Y Tyy |cosp+cosi—2yksinplx) cosp+cosi—2yxksifp](x+a)) cosp+cosh(— 2y« sinp](a—x))
(293
and
. a22 . — . . —[p
o= T, tan “|tanh — y« sin p]x)ta > —tan “|tanh(yk sin p](a—x))ta >
—tanl(tanr(— YK sir[p](a+7))tar(g )} (29b)

Sincef, represents twd ramps, Eq(29b) is very similarto  for a gap soliton withp=1.5 and a varying initial velocity.
the right hand side of Eq26). Similarly, f; represents twa  The two dashed vertical lines show the perturbed region. In
ramps, and resembles the right hand side of (26). all cases the agreement between the EPP and the exact re-
To illustrate the accuracy of the EPP for perturbatian), sults is very good, the only difference being a slight oscilla-
we show the case where, = —0.02,A ;= —0.04,x=1, and tion in the exact results after the gap soliton has traveled
a=>5. Figure 5 shows the exact and approximate trajectoriethrough the perturbation.
The trajectories in Fig. 5 suggest that the gap soliton ex-
I e L B periences a potential barrier, since it slows down as it enters
the perturbed region. As discussed, we can define a potential
for the EPP force, and, as expected from Fig. 5, the potential
now consists of a single peak near the origin. Since féor a
ramp an analytic expression for the potential cannot be
found, f, cannot be integrated, unlikg;. Calculating the
potential numerically, we find that the peak height of the
potential for Fig. 5 is 0.226 which, using ER2), implies
that gap solitons with a velocity less than 0.394 are reflected.
Numerical solutions of the EPP give a maximum reflected
e velocity of 0.355, which is identical to the value found from
80 85 90 95 100 full simulations of the NLCME. The small discrepancy is to
Position be expected since the conditii| <1 is not satisfied every-
FIG. 4. Field distribution as a function of position for a gap Where. _ _ o
soliton initially with p=1 and y=0.5 after propagation along a It is well known how a point defect in the grating intro-
ramp with A 5=0.05. Note that the gap soliton has broken up intoduces a resonant state within the band gap, leading to zero
two pulses along with a long radiation tail. The dashed line showdeflection at the resonant frequeni@0]. For gratings with a
[f.| the dotted ling/f_|2, and the solid line the total intensity localized defect the same holds true. In Fig. 6 we show the
[f.]2+]F_|2 reflection spectrum for a grating with parameters as in Fig. 5.

Intensity
o
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‘ ) o FIG. 7. Phase portrait showing velociiyn units ofv) vs nor-
_ FIG. 5. Trajectory showing velocit{in units ofvg) vs the po-  malized position for a gap soliton whose center frequency coincides
sition of a gap soliton withp=1.5. The solid line gives the exact \yjth the frequency of the resonant zero of the grating. The solid line

results, and the dashed line the EPP trajectory. The two dasheghows the exact result, while the dashed line shows the EPP ap-
vertical lines indicate the perturbed region. proach.

The effect of the resonant state is indicated by the dashefr a gap soliton witho=1.5 trapped inside a well witlA
portion of the curve; it clearly shows a reflection zero within =0.02, A 5=0.04, anda=5. The solid line shows the exact
the band gap of the grating. The effect of this localized stateérajectory, while the dashed line shows the EPP trajectory.
can also be seen in the propagation of gap solitons with &lote that the EPP patrticle travels further up the side of the
center frequency near the resonance. Figure 7 shows thwall compared to the exact results. Although both the EPP
phase portrait for a gap soliton with=2.73313 andx  particle and the gap soliton startedxat 0 with y=0.3, the
=0.35. These parameters ensure that the center frequency @p soliton never regains its initial velocity, instead settling
the gap soliton coincides with the resonance. Compared tgown to a smaller limit cycle with a maximum velocity of
previous results, we see a marked difference between exaghout 0.278.

and EPP results: the gap soliton is reflected with a different  Earlier, we stated that linear barriers as discussed here are
velocity, and undergoes considerable oscillations. Most ofypical of the more general class of localized defects, and
these differences are due to the increased radiation lossqgys the understanding of such defects would lead to a more
Due to the resonant zero the low intensity wings can propageneral understanding of gap soliton propagation. As an ex-

gate through the grating instead of being reflected back thmp|e’ we examined gap soliton propagation through a
ward the center of the gap soliton. This interaction with theGaussian defect given by

defect state causes the soliton to move off the EPP contour,
and our approximation thus breaks down. Vij(x)zAijae*(Xz’az)“ In2 (30)

So far we have concentrated on the case whgmandA
are negative. I andA ; are both positive, the potential hill This defect has the same peak strength and full width at half
becomes a potential well. Gap solitons thus speed up as theyaximum as the linear barrier given by Q7). In Fig. 9
enter the perturbed region. The accuracy of the EPP in thithe solid line shows gap soliton trajectories for a Gaussian
region is similar to the case of a potential hill. The presencebarrier withA ,= —0.02,A ;= —0.04, anda=5. The dashed
of a potential well allows for trapped solitons which oscillate lines show the trajectories for the linear barrier with the same
around the center of the grating, as well as stable stationaryarameters as was used in Fig. 5. The vertical lines again
solutions centered at=0. Figure 8 shows the phase portrait indicate the position of the perturbed region.
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FIG. 6. Reflection vs detuning in units affor a grating with a FIG. 8. Trajectory showing velocitgin units ofvg) vs normal-

localized defect, with parameters given in the text. The defect leadized position for a gap soliton with=1.5. The solid line gives the
to a zero reflection, as indicated by the dashed line. exact results, and the dashed line the EPP trajectory.
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i Hence, for gap solitons whose center positi_osatisfies;

|
o
M)

Ki— K|, X>a.

0.4 : <0, we have the perturbation matrix
0.2 ' l 0, x<-a
I : !
5 : : K= K|
s 0 ; ; ViA(X) =V (X) = 5a Xt a), —asx=a (32
= ] 1

—04 Similarly for solitons lying to the right of the origin, we have
-10 5 o0 5 10 K—kKky, X<-—a
X
. . . o . Ky~ K|
FIG. 9. Trajectories showing velocit§in units of vg) vs nor- ViA(X)=Vpy(X) = 5 (x—a), —asx<=a (33
malized position for a gap soliton with=1.5, in the presence of a a
Gaussian barrier. The solid line gives the exact results, and the 0, x>a.

dashed line the results for a linear barrier.
In both case%/;;=V,,=0.
Although for the Gaussian barrier we are not able to Substituting Eq(32) into Eq. (10b), we obtain
evaluate the integrals in the EPP equations of motion ana-

lytically, Fig. 9 suggests that the Gaussian barrier behaves d_7’: K|~ K; a’sinp

gualitatively the same as a linear barrier. Extending this, we dt 2a yI'y

suggest that for a sufficiently smooth barrier the only quan- _ _ _

tities of importance are the peak height and barrier width. « sinh(2yk;sin p](a—x))

Gap solitons thus behave qualitatively the same when per- cosp+ cosh2y«,sin p](a—x))

turbed by a wide range of barriers. Furthermore, we can ap-

proximate all such barriers by a linear barrier and use the sinh(2yf<|sir[p](a+7))

EPP formalism to understand the results in these cases. + (34)

cosp+cosh2yxsin p](a+x))|

V. GRADUAL INTERFACES When x>0 we obtain a similar expression but witq re-

Earlier [18], we concentrated on abrupt interfaces be-Placed byx, . Taking the limit of the right hand side of Eq.
tween two uniform gratings. As a last example we considef34) asa—0, we find an expression that is identical to Eq.

two semi-infinite uniform gratings, with the parameters(32) in Ref.[18] for dP/dt for an abrupt interface. Since we
changing continuously between=—a and x=a. In line  know that the EPP gives accurate results for an abrupt inter-

with the notation used in Ref18], we define face, our gradual model is expected to be accurate for small
a. Also in the limit thatk, > k; anda> 1, the grating appears
K, X<-—a nearly identical to thex ramp discussed above, as in this
K — K| limit the gap soIiFon pnly “sees” the ramp and not the uni-
k=94 K+ oa (x+a), —asx=a (31 form grating behind it.
Whenyy— 0, Eq.(34) does not depend op, and Eq.(15)
K., X>a. is then valid. The resulting potential is

, . _
— KK o« cosp +cosh2«;sin §](a+x
U(x)= —— ( p+ cosh _”[ J(@+x) +4xasin|, (359
2a 2k I'y| "\ cosp+cosh2xsin 8](a—x))
which is valid forx<0. Forx>0 we have
— K~k a? cosp + cosh(2k,sin 8](a+X)
U,(x)= — pt cos2r, ,n[ J@+x) —4xk,asinp | +C. (35b)
2a 2k I'x| '\ cosp+cosh2k,sin 8](a—x))
|
Thus the asymptotic heiglt of this potential is which is independent dd, and is identical to the expression
_ for an abrupt interfacésee Fig. 3 in Ref18]). Thus the final
H=2a? L. sinp, (36)  Velocity of the gap soliton is independent of whether the

Iy grating changes linearly or discontinuously, which is broadly
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FIG. 10. Trajectories showing velocityn units ofvg) vs nor-
malized position for a gap soliton with=2, in the presence of a 0 N
gradual interface witta=2.5,k;=1, and«,=1.1. The solid line —10 -5 0 5 10
gives the exact results, and the dashed line the results for a linear X

barrier. FIG. 11. Graph of the potential for a gradual interface. Here

K=1,k,=1.1, anda=2.5.

consistent with Sec. IV. All that is important in determining

the final velocity, assuming that the gap soliton is not re- . o ) )
flected, is the difference in parameters of the two uniformthere is no significant difference between a Gaussian defect

gratings. and a linear one, for which exact results are available. This
In Fig. 10 we show a variety of trajectories wigh=2,  suggests that the rough gap solitons behavior depends only
k=1, andk,=1.1, witha=2.5. It should be compared with on the general features of the perturbation and not the details.
Fig. 5 of Ref.[18], which shows similar trajectories for an This is further confirmed by the results in Sec. V for an
abrupt interface. The key difference is the trajectory forabrupt interface, which are nearly identical to those derived
x=0.2, which shows significant oscillations after reflection.in our earlier paper for an abrupt interface.
The other trajectories at the gradual interface show fewer We should mention that the manipulation of gap solitons
oscillations than at the abrupt interface. The reasons for they propagation through a nonuniform grating is very attrac-
increased oscillations in the reflected trajectory are not untive. An example is the gap soliton compression in a grating
derstood at present. with a § ramp, which is similar to soliton compression in a
Figure 11 shows the associated potentizd. (35)]. The  dispersion-decreasing fibésee Sec. Ill B. Note that the re-
asymptotic heightH of the gradual interface potential is quired grating is of a standard type, and can be written in a
0.121 24, corresponding to a maximum reflected velocity oktandard photosensitive fibg29]. In contrast, dispersion-
0.237. Numerical integration of the EPP equations show thafiecreasing fiber is highly specialized. Moreover, because of
gap solitons with a velocity of less than 0.238 are reflectedihe strong coupling between the electric field and the grating
while numerical simulations give 0.235. For the correspondat frequencies around the Bragg resonance, the magnitude of
ing abrupt interface gap, solitons with a velocity of less atthe perturbation in a grating can be made much larger than
0.242 are reflected, which is somewhat higher than for thghe perturbation in untreated fiber.
gradual interface. This discrepancy can be understood from A feature of our full simulations is that in many cases the
the graphs of the two potentialBigs. 11 and 3 in Ref18]).  perturbed gap soliton starts oscillating. It is well known theo-
For the gradual interface the maximum height of the potenretically that oscillation modes of gap solitons exjig#];
tial is roughly the same as the asymptotic height. In contrastaowever, these have not yet been observed. Reflection off a
for the abrupt case the maximum height is higher than theerturbation would appear to be a possible way to set up
asymptotic height. Similarly the minimum of the potential such modes experimentally, as the gratings required can eas-
for the abrupt case is less than for the gradual case. Thi§y be fabricated. Furthermore in some cases these oscilla-
difference also allows stable stationary solutions to exist fotions grow and eventually destroy the soliton in line with
the abrupt interface but not for the gradual interface. recent prediction$25]. This instability does not appear in
our model, as we have assumed that the gap soliton has no
internal degrees of motion.
Throughout this work we have assumed that the grating is
The EPP described in Reff18] and extended here is a lossless. This is not a necessary condition for the EPP to
powerful tool for understanding gap soliton propagationwork but rather it has been shown that the EPP can be suc-
through nonuniform gratings. In the low velocity limit, the cessfully applied to gratings with gain and/or loss, and hence
EPP equations reduce to that of a clasical particle moving inve did not consider it here. Similarly we have not examined
an external potential, determined by the nonuniformity. Al-periodic perturbations, since in that case it has been shown
though we have only examined a few highly idealized gratthat a superenvelope approach to the coupled mode equa-
ing types, the insights gained should be applicable to moréions is very successful, and allows analytic solutions to be
general geometries. We showed that for a localized defedbund[31,32.

VI. CONCLUSIONS
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